Criar um Site Grátis Fantástico


A Brief Observational History of the Black

A Brief Observational History of the Black

Review Article
A Brief Observational History of the Black-Hole Spacetimes
Wolfgang Kundt
Argelander Institute of Bonn University, Auf dem H
̈
ugel 71, 53121 Bonn, Germany
Correspondence should be addressed to Wolfgang Kundt; wkundt@astro.uni-bonn.de
Received 24 October 2014; Revised 17 December 2014; Accepted 18 December 2014
Academic Editor: Seyed H. Hendi
Copyright © 2015 Wolfgang Kundt. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproductio
n in any medium, provided the original work is properly cited.
In this year (2015), black holes (BHs) celebrate their 100th birthday, if their birth is taken to be triggered by a handwritten letter
from Martin Schwarzschild to Albert Einstein, in connection with his newly found spherically symmetric vacuum solution.
1. Introduction
Black holes are brainchildren of Einstein-Hilbert’s General
Relativity Theory (GRT). They arose naturally as the non-
singular solutions describing the axially symmetric vacuum
far fields of the gravitational collapse of a sufficiently massive
(rotating) burnt-out star under its own weight and were
subsequently likewise taken seriously on superstellar mass
scales—at the centers of galaxies—as well as on distinctly sub-
stellar mass scales, as evaporating mountain-sized objects (in
mass) formed during earlier cosmic epochs. The (more) gen-
eral possibility of a (slightly) nonsymmetrical gravitational
collapse without a regular event horizon—known under the
name of “naked singularity”—was eliminated from consid-
eration by Roger Penrose’s postulate of “cosmic censorship”
(CC, [
1
]), with the plausible expectation that collapsing bod-
ies would always remove their nonfitting higher multipole
moments via gravitational radiation—strongly suggested by
the heroic work of Richard Price [
2
]—an expectation which
has meanwhile been proven unjustified [
3
,
4
]: BH spacetimes
form a subset of measure zero within the class of all collapse
scenarios.
Should we worry? I do not think so. Observations have
shownthatweliveinsideacomparativelyyoung(partof
the) Universe, with a significant fraction of its primordial
hydrogen yet unburnt (towards chemical elements of higher
nuclear binding energy). No BH has been reliably detected in
our cosmic neighbourhood. Quite likely, all we have to do to
save our regular physical description of this world is to replace
Penrose’s CC hypothesis by the slightly more restrictive one
of AUC (avoidance of unhalted collapse).
2. Birth and Growth of the Black Hole Idea
It was the problem of unhalted gravitational collapse of
large masses under their own weight, which emerged freshly
with Einstein’s GRT—in generalisation of Newton’s Theory—
because, in GRT, pressure has weight (like mass or energy),
and beyond certain (high) mass densities, pressures can no
longer halt a collapse. The most massive neutron stars are
close in density to the instability limit; they realise an extreme
stellar population. What happens when additional matter is
transferred to a heavy neutron star? This question opened the
doors to BH favouritism.
This question is serious, but it is not fatal. Stars can
lose mass through centrifugal ejection, through their winds,
through their radiation, and through nuclear detonations, as
novae—also through supernova explosions—and within the
large set of known neutron stars, none so far is close in mass
to its stability limit of 3
;theyallhavemasses
2
.We
realise that there are hurdles to BH formation.
BHresearchhasnotbeeneasy,asitrequired,among
others, explicit analytic solutions of the GRT equations and
their complete analytic extensions from local to global ones;
see the careful survey by Heusler [
5
] and also Kundt [
6
9
]
and Thorne [
10
]. For a few years after their discovery, all of
usworldwidewerereadytobelievethatBHsmightturnout
to be standard building blocks of the Universe. But it was
equally clear to us, individually as well as in international
discussion groups, for several years, that their detection in
theskywouldbefarfromeasy.Becauseeventheirradiation
cannot escape from them; they cannot emit signals, or blow
winds, or (even) eject jets; they can only swallow, not spit,
Hindawi Publishing Corporation
Advances in Mathematical Physics
Volume 2015, Article ID 617128, 4 pages
http://dx.doi.org/10.1155/2015/617128
página 2
2
Advances in Mathematical Physics
and only absorb, not emit. Their detections would have to
be rather indirect, by carefully watching their surroundings
at the right moments, at low signal strengths, because of
escaping from near the bottom of a deep potential well. As
concerns jets from BHs, supportive claims have been made in
recent years, without proof and without reference to a proof,
basedonlyonimaginationandspeculation.Established
jet engines are among the most sophisticated machines of
the inorganic Universe; they involve strong, heavy rotating
magnets and stable de Laval nozzles [
11
,
12
]. For years, our
best candidate for BH detection has been Cyg X-1, an X-
ray binary blowing jets intermittently containing a bright
primary star and an unseen, heavy companion [
13
16
]: quite
likely, the unseen companion is a neutron star surrounded
by a massive accretion disk [
17
]. None of the rich classes
of stellar-mass BH candidates has ultimately turned out to
contain a BH [
18
]; our search had been in vain.
Another class of BH candidates was already proposed
in [
19
] by Donald Lynden-Bell, through the fear that super-
massive black holes, SMBHs, could form near the massive
center of the deep potential well of a large galaxy. How can
suchaccumulatedmatterbeejectedagaintolargedistances
of lower gravity? A special conference at Bad Honnef in
1995, cochaired by Peter Scheuer, gave a tentative answer to
this puzzle: the central galactic disks may well be supported
by ordinary plasma pressure (perpendicular to disk plane)
combined—in radial direction—with centrifugal forces, and
their nuclear-burning matter may well be reejected into the
CGM in the shape of fountains of galactic scale, observed
as an active galaxy’s
burning disk
(BD), broad-line region
(BLR), NLR, ELR, and EER, out to
10
2
Kpc from its center
and beyond, with the required power supplied by nuclear
burning, in combination with conserved angular momentum
fromthepastspiral-inmotionthroughthedisk[
20
]. This
interpretation has meanwhile been corroborated by the SDSS
plot of the core masses of
15000 galaxies [
21
], whose masses
decrease with cosmic time, from some
10
9.5
at
푧 ≈ 4.5
,
down to some
10
6.5
at present, as well as by the two halo-
sized
-ray lobes of our Milky Way mapped by the FERMI
mission, which are fed in the vicinity of Sgr A
,thehardpoint
source at our galactic center [
12
]. Already Victor Ambart-
sumian noted in [
22
] that galactic centers are observed to
eject, rather than to swallow. And in [
23
] I argue that all the
activities near Sgr A
are satisfactorily described by a BD,
whilst they are multiply inconsistent with a SMBH in its place.
3. Black Hole Thermodynamics and
the (
4) Classes of Black Holes
Once the BH spacetimes had been mastered mathemat-
ically—culminating with Roy Kerr’s metric for a rotating BH
in 1963—and once the expected stellar-mass BHs and the
likewise expected supermassive BHs in the galactic centers
hadbeenbaptised—in1971—byJohnA.WheelerandRemo
RuffiniinPrinceton,backedupbyStephenHawkingetal.
in England’s Cambridge, it was a must to extend their
considered mass range to the maximal physically expected
one and to reflect on the specific properties of the subclasses:
at this point, Stephen Hawking [
24
,
25
]tooktheworld’slead,
by opening the chapter “BH Thermodynamics,” at the seventh
Texas Symposium on Relativistic Astrophysics in Dallas,
a few days before Christmas 1974. He proposed a (mass-
independent) marriage of GR and quantum mechanics, by
assigning a de Broglie wavelength
of the order of its
horizon length to a BH of mass
and with it a temperature
푇:=ℏ푐/휆푘
,suchthataBHofmass
has a temperature
푇(푀) ≈ 10
−7
K
/푀
.Obviously,thisquantumtempera-
ture is ignorably small for BHs of stellar mass or bigger but
could lead to detectable cosmic explosions for mountain-
sizedBHs,whentheyshrinkdownbyevaporationtothe
Hawking mass
=ℏ푐/퐺푚
=10
15
g(with
:=
mass
of the pion).
Instead of the hundreds of publications in this wide
theoretical field, may I just list the names of a few of its leading
authors. Beyond those already quoted, they are Brandon
Carter, Werner Israel, Ted Newman, David Robinson, Jim
Bardeen, Martin Rees, Jim Hartle, Jacob Bekenstein, and
Robert Wald. Their considerations have led to a classification
of all possible BHs into
mini
,
midi
,and
maxi
ones, each class
ranging in mass through a factor of
ℏ푐/퐺푚
2
≈10
20
,starting
at the bottom with the Planck mass
Pl
:=
ℏ푐/퐺=10
−5
g—
whose Compton wavelength equals its Hawking
wavelength—and extending up to the mass of the observable
universe,
= (ℏ푐/퐺)
2
/푚
3
=10
55
g. As concerns their
detection, midi BHs have only been considered seriously
once in 1974, as a possible explanation for the 1908 Tunguska
catastrophe, even though no mechanism for their formation
hadeverbeenproposed.TheywererefutedbyBeasleyand
Tinsley [
26
], based on an absence of tsunamis in the Pacific
duringthedaysofthatevent(whichwouldhavebeenraised
by the midi BH during its exit from the ocean, after having
crossed the Earth). Note that in my understanding, the
Tunguska event has not been an infall event from outside,
rather an ejection event from inside, a kimberlite [
27
].
Next, explosions of mini BHs have been ruled out by Joe
Taylor by a large margin, via an absence of detected radio
bursts of the implied kind. And I have never been shown
convincing evidence of a maxi BH either, throughout the
decades since their proposition [
12
]. Note that yet another
class of BHs has been taken seriously in 2012, when CERN’s
LargeHadronColliderwasassignedtosearchfortheHiggs
particle, quantum mini BHs, much lighter than the Planck
mass, whose growth was feared to possibly swallow the whole
city of Geneva. Fortunately for our home planet Earth, this
most dangerous class of BHs has not shown up either.
BHs have thus remained unobserved objects in all weight
classes. Even worse, the book by Yvan Leblanc [
28
]claimsthat
BH thermodynamics is inconsistent with standard textbooks
onphysics.Anumberoffurtherpeoplesupporthisview,
amongthemVladimirBelinski[
29
]. The publication of my
own reply to Hawking’s launching paper [
24
]onBHentropy,
in [1976], was delayed by more than half a year and eventually
printed without sending me proof sheets and with 13 typos
added. In it, I pointed out that his definition of BH entropy
was inconsistent with the textbook definition of entropy
in physics. (Textbook entropy scales linearly with mass,
página 3
Avanços na Física Matemática
3
A entropia de Hawking escala-a quadraticamente.)
propostas para combinar GR com mecânica quântica, minha própria
compreensão é que a teoria quântica não deve ser aplicada
para sistemas cujas partículas são puramente macroscópicas, que
é muito maior que seu comprimento de onda de Broglie. este
critério abrange também a recente proposta de Vaz [
30
].
4. Deve a censura cósmica ser substituída por
a hipótese da AUC?
As singularidades nuas eram antipáticas desde o começo de
História de BH, em particular por Penrose [
1
], e nunca
apelou para astrofísicos, porque a sua relevância seria
significa que nos falta uma teoria completa do espaço e do tempo. E se
geodésicas nulas futuras poderiam conectar subsistemas em colapso de
o Universo com nossos telescópios, isso significaria que estes
subsistemas - ou pelo menos certas partes deles - não podem mais
ser descrito por soluções regulares de GRT, isto é, que
falta uma teoria completa do nosso mundo. Mas o trabalho de Pankaj
Joshi [
3
], Hernando Quevedo, Bahram Mashhoon, Pankaj
Joshi e Malafarina [
4
], e alguns outros
o colapso gravitacional geral termina em singularidades nuas,
em vez de em BHs. Que escolha temos?
Até agora, nenhum lugar no céu jamais me pareceu
contendo uma singularidade nua. Com cuidado suficiente, todos os nossos
mapas sempre permitiram interpretações por não-singulares
condensações de matéria, não muito diferentes da nossa energia solar
sistema. Mas claramente, se a maior parte do hidrogênio cósmico fosse
substituído por ferro, ou justo por
os que estão acima não previam mais obstáculos para evitar
colapso inalterado, tanto na massa estelar como na superstelar
balanças expostas.
discos centrais de galáxias seriam espremidos fora do equilíbrio
pelo seu próprio peso, quase todos eles se formando nus
singularidades, dificilmente qualquer um deles formando um buraco negro. o
fato de que nada disso foi observado até agora me faz
otimista em acreditar que a nossa vizinhança cósmica é (ainda)
longe desse Estado, que será o maior subdomínio
o universo para que possa substituir a hipótese de Roger
pela AUC, a hipótese de um
evitar o colapso inalterado
[
27
]. AUC postula que em nosso cósmico atualmente observável
vizinhança, colapso gravitacional não
acontecer.
Tal colapso inalterado pode ser evitado pelos obstáculos
de queima nuclear, de momento angular conservado, de
pressões estabilizadoras e / ou pressões magnéticas, e
de ejecções semelhantes a jactos, que podem atrasar um colapso. Estrela
a formação é atrasada para (apenas) alguns
/ ano em nosso presente
galáxia, colapsos estelares são interrompidos pela queima nuclear ou,
durante os estágios posteriores, por pressões de degeneração dentro do
estrelas, também por explosões Nova e SN, e centros galácticos
canlikewisebesupported contra o colapso por suas pressões,
por aquecimento nuclear, e por ejeções explosivas de seus
discos centrais que atrasam o seu encolhimento final até depois
a vida do nosso sistema solar.
Muito provavelmente, não precisamos nos preocupar com a
futuro da vida terrestre. É melhor nos concentrarmos em proteger
levando o nosso planeta Terra contra os perigos da falta de
crescimento populacional, de catástrofes nucleares, de resíduos
queima nuclear e de pragas. Eles são muito mais para ser
temido do que a morte final de estrelas distantes e de distante
galáxias no Universo.
Conflito de interesses
O autor declara que não há conflito de interesses
sobre a publicação deste artigo.
Agradecimentos
Meus cordiais agradecimentos pelo papel - incluindo seu conteúdo -
vá para Ole Marggraf e também para Hans Baumann. Obrigado
como uma referência anônima em cinco
melhorias do papel original.
Referências
[1] R. Penrose, "buracos negros"
Americano científico
vol.226, no.5, pp.
38-46, 1972.
[2] RHPrice, “Perurburbações não-esféricas de gravidezes relativísticas
colapso institucional. I. perturbações escalares e gravitacionais "
PhysicalReview.D.ParticlesandFields
vol.5, pp.2419-2438,
1972
[3] PSJoshi, “Nakedsingularities, o buraco negro tem
irmão fantástico ”, Scientific American, fevereiro de 2009, literalmente
reprintedinvol.22, no.2, mai2014.
[4] PSJoshiandD.Malafarina, “Instabilidade da formação do buraco negro
sob pequenas perturbações de pressão ”
Relatividade Geral e
Gravitação
, vol.45, no.2, pp.305-317,2013.
[5] M. Heusler,
Teoremas da exclusividade do buraco negro
Cambridge Lec-
Notas em Física No. 6, Cambridge University Press, 1996.
[6] W. Kundt, "teoria global do espaço-tempo", em
Procedimentos do
13º Seminário Bienal do Congresso de Matemática do Canadá
(em Halifax, agosto de 1971)
, JRVanstone, Ed., Vol.1, p.93-133,
Montreal, Canadá, 1972.
[7] W. Kundt, “Schwarze L
̈
ocre,"
Physik em unserer Zeit
vol.4, não.
6, pp. 181-186, 1973.
[8] W.Kundt, “SchwarzeL
̈
ochernachwievoraktuell ”,
Physik in
Unserer Zeit
, vol.7, no.5, pp.131-135,1976.
[9] W. Kundt, "Produção de entropia por buracos negros"
Natureza
vol.259
não. 5538, pp. 30-31, 1976.
[10] KS Thorne, "A busca por buracos negros"
Americano científico
,
vol. 231, no. 6, 1974.
[11] W. Kundt, "buracos negros não podem soprar Jets", em
Proceedings of
a 12ª Escola Brasileira de Cosmologia e Gravitação: Man-
garatiba
, Novello and Bergliaffa, Eds., Pp. 109–118, Cambridge
Editores Científicos, setembro de 2011.
[12] W. Kundt, "Nosso centro Galáctico - o disco de gravação mais próximo"
Acta
Polytechnica
vol. 53, não. 1, pp. 506-511, 2013.
[13] JN Bahcall, FJ Dyson, JI Katz e B. Paczy
́
nski, “Multiple
sistemas estelares e fontes de raios X ”,
O Jornal Astrofísico
vol.
189, pp. L17-L18, 1974.
[14] AC Fabian, JE Pringle, e JAJ Whelan, “é Cyg X-1 a
Estrêla de Neutróns?"
Natureza
vol.247, no.5440, pp.351-352,1974.
[15] Y. Avni e JN Bahcall, “Variações e massas de luz elipsoidais
de binários de raios-X ”,
O Jornal Astrofísico
vol.197, part1, pp.
675-688, 1975.
página 4
4
Avanços na Física Matemática
[16] AWShafter, RJHarms, B.Margon eJ.I.Katz, “Alower
limite na magnitude do acompanhante ao HDE 226868 /
Cygnus X-1 ”
O Jornal Astrofísico
vol.240, pp.612-618,
1980.
[17] W. Kundt, “Cyg X-1 - uma estrela de nêutrons cercada por um enorme
disco?"
Astronomia e Astrofísica
, vol.80, no.2, pp.L7 – L10,1979.
[18] W. Kundt e D. Fischer, “Existe um buraco negro entre os negros?
candidatos a buraco?
Jornal de Astrofísica e Astronomia
vol.10
não. 1, pp. 119-138, 1989.
[19] D. Lynden-Bell, "Núcleos Galácticos como quasares velhos em colapso"
Natureza
vol.223, no.5207, pp.690-694, 1969.
[20] W. Kundt, Ed.
Jatos de Estrelas e Núcleos Galácticos: Anais
ofaWorkshopHeldatBadHonnef, Alemanha, 3 a 7 de julho de 1995
vol.
471 de
Notas de aula em física
Springer, 1996.
[21] M. Vestergaard, X. Fan, CA Tremonti, PS Osmer e GT
Richards, “Funções de massa dos buracos negros ativos em distantes
quasares do sloan digital sky survey data release 3 ”,
o
Cartas de periódicos astrofísicos
vol. 674, n. 1, p. L1, 2008.
[22] V. Ambartsumian, “Relatório sobre as atividades da AGN”, em
Proceedings of
a Conferência Solvay de Física
Bruxelas, Bélgica, 1958.
[23] W. Kundt, “Astrofísica sem buracos negros e sem extra-
explosões de raios gama galácticas ”
Procedimentos da Acta Polytechnica CTU
,
vol. 1, não. 1, pp. 27–33, 2014.
[24] SW Hawking, "Explosões de buraco negro?"
Natureza
vol.248, não.
5443, pp. 30-31, 1974.
[25] SW Hawking, "Criação de partículas por buracos negros"
Comunica-
em Física Matemática
, vol.43, no.3, pp.199–220,1975.
[26] WH Beasley e BA Tinsley, “evento Tunguska não foi causado
por um buraco negro ”
Natureza
vol.250, no.5467, pp.555-559,1974.
[27] W. Kundt e O. Marggraf,
Physikalische Mythen auf dem
Pr
̈
ufstand
Springer, Berlim, Alemanha, 2014.
[28] Y. Leblanc,
Buracos negros quânticos: uma análise crítica
, eField-
Theory.COM, 2002.
[29] VA Belinski, "Sobre a existência da evaporação dos buracos negros ainda
novamente,"
Letras de Física A
vol.354, no.4, pp.249-257.2006.
[30] C. Vaz, "Não há nada" preto "sobre um buraco negro"
http: // xxx
.tau.ac.il / abs / 1407.3823v1
.
página 5
Submit your manuscripts at
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
Mathematics
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
Mathematical Problems
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com
Differential Equations
International Journal of
Volume 201
4
Applied Mathematics
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Mathematical Physics
Advances in
Complex Analysis
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
Optimization
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Operations Research
Advances in
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Function Spaces
Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
International
Journal of
Mathematics and
Mathematical
Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Algebra
Discrete Dynamics in
Nature and Society
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Decision Sciences
Advances in
Discrete Mathematics
Journal of
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 201
4
Stochastic Analysis
International Journal of
Marcar como interessante Comente Excluir destaque
Citação superior


Uma breve história observacional dos espaços-tempos Black-Hole. Available from: https://www.researchgate.net/publication/272370922_A_Brief_Observational_History_of_the_Black-Hole_Spacetimes [accessed Mar 26 2018].